Papers
Topics
Authors
Recent
2000 character limit reached

ExplainBench: A Benchmark Framework for Local Model Explanations in Fairness-Critical Applications (2506.06330v1)

Published 31 May 2025 in cs.LG

Abstract: As machine learning systems are increasingly deployed in high-stakes domains such as criminal justice, finance, and healthcare, the demand for interpretable and trustworthy models has intensified. Despite the proliferation of local explanation techniques, including SHAP, LIME, and counterfactual methods, there exists no standardized, reproducible framework for their comparative evaluation, particularly in fairness-sensitive settings. We introduce ExplainBench, an open-source benchmarking suite for systematic evaluation of local model explanations across ethically consequential datasets. ExplainBench provides unified wrappers for popular explanation algorithms, integrates end-to-end pipelines for model training and explanation generation, and supports evaluation via fidelity, sparsity, and robustness metrics. The framework includes a Streamlit-based graphical interface for interactive exploration and is packaged as a Python module for seamless integration into research workflows. We demonstrate ExplainBench on datasets commonly used in fairness research, such as COMPAS, UCI Adult Income, and LendingClub, and showcase how different explanation methods behave under a shared experimental protocol. By enabling reproducible, comparative analysis of local explanations, ExplainBench advances the methodological foundations of interpretable machine learning and facilitates accountability in real-world AI systems.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.