Papers
Topics
Authors
Recent
2000 character limit reached

Modeling human reputation-seeking behavior in a spatio-temporally complex public good provision game (2506.06032v1)

Published 6 Jun 2025 in cs.MA

Abstract: Multi-agent reinforcement learning algorithms are useful for simulating social behavior in settings that are too complex for other theoretical approaches like game theory. However, they have not yet been empirically supported by laboratory experiments with real human participants. In this work we demonstrate how multi-agent reinforcement learning can model group behavior in a spatially and temporally complex public good provision game called Clean Up. We show that human groups succeed in Clean Up when they can see who is who and track reputations over time but fail under conditions of anonymity. A new multi-agent reinforcement learning model of reputation-based cooperation demonstrates the same difference between identifiable and anonymous conditions. Furthermore, both human groups and artificial agent groups solve the problem via turn-taking despite other options being available. Our results highlight the benefits of using multi-agent reinforcement learning to model human social behavior in complex environments.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 1 like about this paper.