Papers
Topics
Authors
Recent
2000 character limit reached

TRIDENT -- A Three-Tier Privacy-Preserving Propaganda Detection Model in Mobile Networks using Transformers, Adversarial Learning, and Differential Privacy (2506.05421v2)

Published 5 Jun 2025 in cs.CR and cs.CY

Abstract: The proliferation of propaganda on mobile platforms raises critical concerns around detection accuracy and user privacy. To address this, we propose TRIDENT - a three-tier propaganda detection model implementing transformers, adversarial learning, and differential privacy which integrates syntactic obfuscation and label perturbation to mitigate privacy leakage while maintaining propaganda detection accuracy. TRIDENT leverages multilingual back-translation to introduce semantic variance, character-level noise, and entity obfuscation for differential privacy enforcement, and combines these techniques into a unified defense mechanism. Using a binary propaganda classification dataset, baseline transformer models (BERT, GPT-2) we achieved F1 scores of 0.89 and 0.90. Applying TRIDENT's third-tier defense yields a reduced but effective cumulative F1 of 0.83, demonstrating strong privacy protection across mobile ML deployments with minimal degradation.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.