Latent Variable Autoregression with Exogenous Inputs (2506.04488v2)
Abstract: This paper introduces a new least squares regression methodology called (C)LARX: a (constrained) latent variable autoregressive model with exogenous inputs. Two additional contributions are made as a side effect: First, a new matrix operator is introduced for matrices and vectors with blocks along one dimension; Second, a new latent variable regression (LVR) framework is proposed for economics and finance. The empirical section examines how well the stock market predicts real economic activity in the United States. (C)LARX models outperform the baseline OLS specification in out-of-sample forecasts and offer novel analytical insights about the underlying functional relationship.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.