Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

LRScheduler: A Layer-aware and Resource-adaptive Container Scheduler in Edge Computing (2506.03694v1)

Published 4 Jun 2025 in cs.DC

Abstract: Lightweight containers provide an efficient approach for deploying computation-intensive applications in network edge. The layered storage structure of container images can further reduce the deployment cost and container startup time. Existing researches discuss layer sharing scheduling theoretically but with little attention paid to the practical implementation. To fill in this gap, we propose and implement a Layer-aware and Resource-adaptive container Scheduler (LRScheduler) in edge computing. Specifically, we first utilize container image layer information to design and implement a node scoring and container scheduling mechanism. This mechanism can effectively reduce the download cost when deploying containers, which is very important in edge computing with limited bandwidth. Then, we design a dynamically weighted and resource-adaptive mechanism to enhance load balancing in edge clusters, increasing layer sharing scores when resource load is low to use idle resources effectively. Our scheduler is built on the scheduling framework of Kubernetes, enabling full process automation from task information acquisition to container dep=loyment. Testing on a real system has shown that our design can effectively reduce the container deployment cost as compared with the default scheduler.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.