Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

POLARIS: A High-contrast Polarimetric Imaging Benchmark Dataset for Exoplanetary Disk Representation Learning (2506.03511v1)

Published 4 Jun 2025 in astro-ph.EP, cs.AI, astro-ph.IM, and eess.IV

Abstract: With over 1,000,000 images from more than 10,000 exposures using state-of-the-art high-contrast imagers (e.g., Gemini Planet Imager, VLT/SPHERE) in the search for exoplanets, can AI serve as a transformative tool in imaging Earth-like exoplanets in the coming decade? In this paper, we introduce a benchmark and explore this question from a polarimetric image representation learning perspective. Despite extensive investments over the past decade, only a few new exoplanets have been directly imaged. Existing imaging approaches rely heavily on labor-intensive labeling of reference stars, which serve as background to extract circumstellar objects (disks or exoplanets) around target stars. With our POLARIS (POlarized Light dAta for total intensity Representation learning of direct Imaging of exoplanetary Systems) dataset, we classify reference star and circumstellar disk images using the full public SPHERE/IRDIS polarized-light archive since 2014, requiring less than 10 percent manual labeling. We evaluate a range of models including statistical, generative, and large vision-LLMs and provide baseline performance. We also propose an unsupervised generative representation learning framework that integrates these models, achieving superior performance and enhanced representational power. To our knowledge, this is the first uniformly reduced, high-quality exoplanet imaging dataset, rare in astrophysics and machine learning. By releasing this dataset and baselines, we aim to equip astrophysicists with new tools and engage data scientists in advancing direct exoplanet imaging, catalyzing major interdisciplinary breakthroughs.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube