Robustness-Aware Tool Selection and Manipulation Planning with Learned Energy-Informed Guidance (2506.03362v1)
Abstract: Humans subconsciously choose robust ways of selecting and using tools, based on years of embodied experience -- for example, choosing a ladle instead of a flat spatula to serve meatballs. However, robustness under uncertainty remains underexplored in robotic tool-use planning. This paper presents a robustness-aware framework that jointly selects tools and plans contact-rich manipulation trajectories, explicitly optimizing for robustness against environmental disturbances. At the core of our approach is a learned, energy-based robustness metric, which guides the planner towards robust manipulation behaviors. We formulate a hierarchical optimization pipeline that first identifies a tool and configuration that optimizes robustness, and then plans a corresponding manipulation trajectory that maintains robustness throughout execution. We evaluate our approach across three representative tool-use tasks. Simulation and real-world results demonstrate that our approach consistently selects robust tools and generates disturbance-resilient manipulation plans.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.