Papers
Topics
Authors
Recent
2000 character limit reached

A Pre-trained Framework for Multilingual Brain Decoding Using Non-invasive Recordings (2506.03214v1)

Published 3 Jun 2025 in q-bio.NC, cs.AI, and cs.CL

Abstract: Brain-computer interfaces (BCIs) with speech decoding from brain recordings have broad application potential in fields such as clinical rehabilitation and cognitive neuroscience. However, current decoding methods remain limited to single-language, single-subject, and single neuroimaging modality settings, restricting their clinical applicability and generalizability. Here we propose a joint multilingual, multi-subject and multimodal decoding framework. It maps diverse brain recordings into a unified semantic space defined by a pre-trained multilingual model (PMM), enabling decoding across multiple languages, multiple subjects and multiple neuroimaging modalities. The proposed framework is validated using non-invasive brain recordings from 159 participants across four languages. Experimental results show that it exhibits strong generalization across multilingual, multi-subject, and multimodal settings. More importantly, the proposed framework can promote linguistic fairness, which is vital for underrepresented languages in BCI applications. The unified semantic space enables cross-lingual mapping enhancement, allowing the framework to boost the decoding performance of underrepresented languages, thereby promoting linguistic fairness. Overall, the proposed framework establishes a new potential paradigm for brain decoding, opening new paths for broader applications of BCI.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: