Controllable Text-to-Speech Synthesis with Masked-Autoencoded Style-Rich Representation
Abstract: Controllable TTS models with natural language prompts often lack the ability for fine-grained control and face a scarcity of high-quality data. We propose a two-stage style-controllable TTS system with LLMs, utilizing a quantized masked-autoencoded style-rich representation as an intermediary. In the first stage, an autoregressive transformer is used for the conditional generation of these style-rich tokens from text and control signals. The second stage generates codec tokens from both text and sampled style-rich tokens. Experiments show that training the first-stage model on extensive datasets enhances the content robustness of the two-stage model as well as control capabilities over multiple attributes. By selectively combining discrete labels and speaker embeddings, we explore fully controlling the speaker's timbre and other stylistic information, and adjusting attributes like emotion for a specified speaker. Audio samples are available at https://style-ar-tts.github.io.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.