Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Implicit Regularization of the Deep Inverse Prior Trained with Inertia (2506.02986v1)

Published 3 Jun 2025 in cs.LG

Abstract: Solving inverse problems with neural networks benefits from very few theoretical guarantees when it comes to the recovery guarantees. We provide in this work convergence and recovery guarantees for self-supervised neural networks applied to inverse problems, such as Deep Image/Inverse Prior, and trained with inertia featuring both viscous and geometric Hessian-driven dampings. We study both the continuous-time case, i.e., the trajectory of a dynamical system, and the discrete case leading to an inertial algorithm with an adaptive step-size. We show in the continuous-time case that the network can be trained with an optimal accelerated exponential convergence rate compared to the rate obtained with gradient flow. We also show that training a network with our inertial algorithm enjoys similar recovery guarantees though with a less sharp linear convergence rate.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.