Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 169 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On the Robustness of Tabular Foundation Models: Test-Time Attacks and In-Context Defenses (2506.02978v1)

Published 3 Jun 2025 in cs.LG

Abstract: Recent tabular Foundational Models (FM) such as TabPFN and TabICL, leverage in-context learning to achieve strong performance without gradient updates or fine-tuning. However, their robustness to adversarial manipulation remains largely unexplored. In this work, we present a comprehensive study of the adversarial vulnerabilities of tabular FM, focusing on both their fragility to targeted test-time attacks and their potential misuse as adversarial tools. We show on three benchmarks in finance, cybersecurity and healthcare, that small, structured perturbations to test inputs can significantly degrade prediction accuracy, even when training context remain fixed. Additionally, we demonstrate that tabular FM can be repurposed to generate transferable evasion to conventional models such as random forests and XGBoost, and on a lesser extent to deep tabular models. To improve tabular FM, we formulate the robustification problem as an optimization of the weights (adversarial fine-tuning), or the context (adversarial in-context learning). We introduce an in-context adversarial training strategy that incrementally replaces the context with adversarial perturbed instances, without updating model weights. Our approach improves robustness across multiple tabular benchmarks. Together, these findings position tabular FM as both a target and a source of adversarial threats, highlighting the urgent need for robust training and evaluation practices in this emerging paradigm.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.