Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

PC-MoE: Memory-Efficient and Privacy-Preserving Collaborative Training for Mixture-of-Experts LLMs (2506.02965v2)

Published 3 Jun 2025 in cs.LG

Abstract: Mixture-of-Experts (MoE) has been gaining popularity due to its successful adaptation to LLMs. In this work, we introduce Privacy-preserving Collaborative Mixture-of-Experts (PC-MoE), which leverages the sparsity of the MoE architecture for memory-efficient decentralized collaborative LLM training, enabling multiple parties with limited GPU-memory and data resources to collectively train more capable LLMs than they could achieve individually. At the same time, this approach protects training data privacy of each participant by keeping training data, as well as parts of the forward pass signal and gradients locally within each party. By design, PC-MoE synergistically combines the strengths of distributed computation with strong confidentiality assurances. Unlike most privacy-preserving schemes, which pay for confidentiality with lower task accuracy, our framework breaks that trade-off: across seven popular LLM benchmarks, it almost matches (and sometimes exceeds) the performance and convergence rate of a fully centralized model, enjoys near 70% peak GPU RAM reduction, while being fully robust against reconstruction attacks.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube