Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 116 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 59 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

From Theory to Practice with RAVEN-UCB: Addressing Non-Stationarity in Multi-Armed Bandits through Variance Adaptation (2506.02933v1)

Published 3 Jun 2025 in cs.LG and stat.ML

Abstract: The Multi-Armed Bandit (MAB) problem is challenging in non-stationary environments where reward distributions evolve dynamically. We introduce RAVEN-UCB, a novel algorithm that combines theoretical rigor with practical efficiency via variance-aware adaptation. It achieves tighter regret bounds than UCB1 and UCB-V, with gap-dependent regret of order $K \sigma_{\max}2 \log T / \Delta$ and gap-independent regret of order $\sqrt{K T \log T}$. RAVEN-UCB incorporates three innovations: (1) variance-driven exploration using $\sqrt{\hat{\sigma}_k2 / (N_k + 1)}$ in confidence bounds, (2) adaptive control via $\alpha_t = \alpha_0 / \log(t + \epsilon)$, and (3) constant-time recursive updates for efficiency. Experiments across non-stationary patterns - distributional changes, periodic shifts, and temporary fluctuations - in synthetic and logistics scenarios demonstrate its superiority over state-of-the-art baselines, confirming theoretical and practical robustness.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.