Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

FaceSleuth: Learning-Driven Single-Orientation Attention Verifies Vertical Dominance in Micro-Expression Recognition (2506.02695v2)

Published 3 Jun 2025 in cs.CV

Abstract: Micro-expression recognition (MER) demands models that can amplify millisecond-level, low-amplitude facial motions while suppressing identity-specific appearance. We introduce FaceSleuth, a dual-stream architecture that (1) enhances motion along the empirically dominant vertical axix through a Continuously Vertical Attention (CVA) block, (2) localises the resulting signals with a Facial Position Focalizer built on hierarchical cross-window attention, and (3) steers feature learning toward physiologically meaningful regions via lightweight Action-Unit embeddings. To examine whether the hand-chosen vertical axis is indeed optimal, we further propose a Single-Orientation Attention (SOA) module that learns its own pooling direction end-to-end. SOA is differentiable, adds only 0.16 % parameters, and collapses to CVA when the learned angle converges to {\Pi}/2. In practice, SOA reliably drifts to 88{\deg}, confirming the effectiveness of the vertical prior while delivering consistent gains. On three standard MER benchmarks, FaceSleuth with CVA already surpasses previous state-of-the-art methods; plugging in SOA lifts accuracy and F1 score performance to 95.1 % / 0.918 on CASME II, 87.1 % / 0.840 on SAMM, and 92.9 % / 0.917 on MMEW without sacrificing model compactness. These results establish a new state of the art and, for the first time, provide empirical evidence that the vertical attention bias is the most discriminative orientation for MER.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube