Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

SiamNAS: Siamese Surrogate Model for Dominance Relation Prediction in Multi-objective Neural Architecture Search (2506.02623v1)

Published 3 Jun 2025 in cs.LG, cs.AI, and cs.CV

Abstract: Modern neural architecture search (NAS) is inherently multi-objective, balancing trade-offs such as accuracy, parameter count, and computational cost. This complexity makes NAS computationally expensive and nearly impossible to solve without efficient approximations. To address this, we propose a novel surrogate modelling approach that leverages an ensemble of Siamese network blocks to predict dominance relationships between candidate architectures. Lightweight and easy to train, the surrogate achieves 92% accuracy and replaces the crowding distance calculation in the survivor selection strategy with a heuristic rule based on model size. Integrated into a framework termed SiamNAS, this design eliminates costly evaluations during the search process. Experiments on NAS-Bench-201 demonstrate the framework's ability to identify Pareto-optimal solutions with significantly reduced computational costs. The proposed SiamNAS identified a final non-dominated set containing the best architecture in NAS-Bench-201 for CIFAR-10 and the second-best for ImageNet, in terms of test error rate, within 0.01 GPU days. This proof-of-concept study highlights the potential of the proposed Siamese network surrogate model to generalise to multi-tasking optimisation, enabling simultaneous optimisation across tasks. Additionally, it offers opportunities to extend the approach for generating Sets of Pareto Sets (SOS), providing diverse Pareto-optimal solutions for heterogeneous task settings.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.