Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

The tight length spectrum of large-genus random hyperbolic surfaces with many cusps (2506.02611v1)

Published 3 Jun 2025 in math.PR and math.GT

Abstract: Since the work of Mirzakhani & Petri \cite{Mirzakhani_petri_2019} on random hyperbolic surfaces of large genus, length statistics of closed geodesics have been studied extensively. We focus on the case of random hyperbolic surfaces with cusps, the number $n_g$ of which grows with the genus $g$. We prove that if $n_g$ grows fast enough and we restrict attention to special geodesics that are \emph{tight}, we recover upon proper normalization the same Poisson point process in the large-$g$ limit for the length statistics. The proof relies on a recursion formula for tight Weil-Petersson volumes obtained in \cite{budd2023topological} and on a generalization of Mirzakhani's integration formula to the tight setting.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.