Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Hyperspectral Image Generation with Unmixing Guided Diffusion Model (2506.02601v1)

Published 3 Jun 2025 in cs.CV and eess.IV

Abstract: Recently, hyperspectral image generation has received increasing attention, but existing generative models rely on conditional generation schemes, which limits the diversity of generated images. Diffusion models are popular for their ability to generate high-quality samples, but adapting these models from RGB to hyperspectral data presents the challenge of high dimensionality and physical constraints. To address these challenges, we propose a novel diffusion model guided by hyperspectral unmixing. Our model comprises two key modules: an unmixing autoencoder module and an abundance diffusion module. The unmixing autoencoder module leverages unmixing guidance to shift the generative task from the image space to the low-dimensional abundance space, significantly reducing computational complexity while preserving high fidelity. The abundance diffusion module generates samples that satisfy the constraints of non-negativity and unity, ensuring the physical consistency of the reconstructed HSIs. Additionally, we introduce two evaluation metrics tailored to hyperspectral data. Empirical results, evaluated using both traditional metrics and our proposed metrics, indicate that our model is capable of generating high-quality and diverse hyperspectral images, offering an advancement in hyperspectral data generation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.