Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On Universality Classes of Equivariant Networks (2506.02293v1)

Published 2 Jun 2025 in cs.LG

Abstract: Equivariant neural networks provide a principled framework for incorporating symmetry into learning architectures and have been extensively analyzed through the lens of their separation power, that is, the ability to distinguish inputs modulo symmetry. This notion plays a central role in settings such as graph learning, where it is often formalized via the Weisfeiler-Leman hierarchy. In contrast, the universality of equivariant models-their capacity to approximate target functions-remains comparatively underexplored. In this work, we investigate the approximation power of equivariant neural networks beyond separation constraints. We show that separation power does not fully capture expressivity: models with identical separation power may differ in their approximation ability. To demonstrate this, we characterize the universality classes of shallow invariant networks, providing a general framework for understanding which functions these architectures can approximate. Since equivariant models reduce to invariant ones under projection, this analysis yields sufficient conditions under which shallow equivariant networks fail to be universal. Conversely, we identify settings where shallow models do achieve separation-constrained universality. These positive results, however, depend critically on structural properties of the symmetry group, such as the existence of adequate normal subgroups, which may not hold in important cases like permutation symmetry.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 34 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube