Papers
Topics
Authors
Recent
2000 character limit reached

Random-key genetic algorithms: Principles and applications

Published 2 Jun 2025 in cs.NE, cs.AI, and math.OC | (2506.02120v2)

Abstract: A random-key genetic algorithm is an evolutionary metaheuristic for discrete and global optimization. Each solution is encoded as a vector of N random keys, where a random key is a real number randomly generated in the continuous interval [0, 1). A decoder maps each vector of random keys to a solution of the optimization problem being solved and computes its cost. The benefit of this approach is that all genetic operators and transformations can be maintained within the unitary hypercube, regardless of the problem being addressed. This enhances the productivity and maintainability of the core framework. The algorithm starts with a population of P vectors of random keys. At each iteration, the vectors are partitioned into two sets: a smaller set of high-valued elite solutions and the remaining non-elite solutions. All elite elements are copied, without change, to the next population. A small number of random-key vectors (the mutants) is added to the population of the next iteration. The remaining elements of the population of the next iteration are generated by combining, with the parametrized uniform crossover of Spears and DeJong (1991), pairs of solutions. This chapter reviews random-key genetic algorithms and describes an effective variant called biased random-key genetic algorithms.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.