Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Learning Circuits with Infinite Tensor Networks (2506.02105v1)

Published 2 Jun 2025 in quant-ph and cond-mat.str-el

Abstract: Hamiltonian simulation on quantum computers is strongly constrained by gate counts, motivating techniques to reduce circuit depths. While tensor networks are natural competitors to quantum computers, we instead leverage them to support circuit design, with datasets of tensor networks enabling a unitary synthesis inspired by quantum machine learning. For a target simulation in the thermodynamic limit, translation invariance is exploited to significantly reduce the optimization complexity, avoiding a scaling with system size. Our approach finds circuits to efficiently prepare ground states, and perform time evolution on both infinite and finite systems with substantially lower gate depths than conventional Trotterized methods. In addition to reducing CNOT depths, we motivate similar utility for fault-tolerant quantum algorithms, with a demonstrated $5.2\times$ reduction in $T$-count to realize $e{-iHt}$. The key output of our approach is the optimized unit-cell of a translation invariant circuit. This provides an advantage for Hamiltonian simulation of finite, yet arbitrarily large, systems on real quantum computers.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.