Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Evaluating the Effectiveness of Pre-Trained Audio Embeddings for Classification of Parkinson's Disease Speech Data (2506.02078v1)

Published 2 Jun 2025 in eess.AS and cs.AI

Abstract: Speech impairments are prevalent biomarkers for Parkinson's Disease (PD), motivating the development of diagnostic techniques using speech data for clinical applications. Although deep acoustic features have shown promise for PD classification, their effectiveness often varies due to individual speaker differences, a factor that has not been thoroughly explored in the existing literature. This study investigates the effectiveness of three pre-trained audio embeddings (OpenL3, VGGish and Wav2Vec2.0 models) for PD classification. Using the NeuroVoz dataset, OpenL3 outperforms others in diadochokinesis (DDK) and listen and repeat (LR) tasks, capturing critical acoustic features for PD detection. Only Wav2Vec2.0 shows significant gender bias, achieving more favorable results for male speakers, in DDK tasks. The misclassified cases reveal challenges with atypical speech patterns, highlighting the need for improved feature extraction and model robustness in PD detection.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.