Papers
Topics
Authors
Recent
Search
2000 character limit reached

Leveraging Large Language Models in Visual Speech Recognition: Model Scaling, Context-Aware Decoding, and Iterative Polishing

Published 27 May 2025 in cs.CV, cs.SD, and eess.AS | (2506.02012v1)

Abstract: Visual Speech Recognition (VSR) transcribes speech by analyzing lip movements. Recently, LLMs have been integrated into VSR systems, leading to notable performance improvements. However, the potential of LLMs has not been extensively studied, and how to effectively utilize LLMs in VSR tasks remains unexplored. This paper systematically explores how to better leverage LLMs for VSR tasks and provides three key contributions: (1) Scaling Test: We study how the LLM size affects VSR performance, confirming a scaling law in the VSR task. (2) Context-Aware Decoding: We add contextual text to guide the LLM decoding, improving recognition accuracy. (3) Iterative Polishing: We propose iteratively refining LLM outputs, progressively reducing recognition errors. Extensive experiments demonstrate that by these designs, the great potential of LLMs can be largely harnessed, leading to significant VSR performance improvement.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.