Papers
Topics
Authors
Recent
2000 character limit reached

Matrix Is All You Need (2506.01966v1)

Published 11 May 2025 in cs.LG and cs.AI

Abstract: Deep neural networks employ specialized architectures for vision, sequential and language tasks, yet this proliferation obscures their underlying commonalities. We introduce a unified matrix-order framework that casts convolutional, recurrent and self-attention operations as sparse matrix multiplications. Convolution is realized via an upper-triangular weight matrix performing first-order transformations; recurrence emerges from a lower-triangular matrix encoding stepwise updates; attention arises naturally as a third-order tensor factorization. We prove algebraic isomorphism with standard CNN, RNN and Transformer layers under mild assumptions. Empirical evaluations on image classification (MNIST, CIFAR-10/100, Tiny ImageNet), time-series forecasting (ETTh1, Electricity Load Diagrams) and language modeling/classification (AG News, WikiText-2, Penn Treebank) confirm that sparse-matrix formulations match or exceed native model performance while converging in comparable or fewer epochs. By reducing architecture design to sparse pattern selection, our matrix perspective aligns with GPU parallelism and leverages mature algebraic optimization tools. This work establishes a mathematically rigorous substrate for diverse neural architectures and opens avenues for principled, hardware-aware network design.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.