Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

Benchmarking Universal Machine Learning Interatomic Potentials for Real-Time Analysis of Inelastic Neutron Scattering Data (2506.01860v1)

Published 2 Jun 2025 in physics.comp-ph and cond-mat.mtrl-sci

Abstract: The accurate calculation of phonons and vibrational spectra remains a significant challenge, requiring highly precise evaluations of interatomic forces. Traditional methods based on the quantum description of the electronic structure, while widely used, are computationally expensive and demand substantial expertise. Emerging universal machine learning interatomic potentials (uMLIPs) offer a transformative alternative by employing pre-trained neural network surrogates to predict interatomic forces directly from atomic coordinates. This approach dramatically reduces computation time and minimizes the need for technical knowledge. In this paper, we produce a phonon database comprising nearly 5,000 inorganic crystals to benchmark the performance of several leading uMLIPs. We further assess these models in real-world applications by using them to analyze experimental inelastic neutron scattering data collected on a variety of materials. Through detailed comparisons, we identify the strengths and limitations of these uMLIPs, providing insights into their accuracy and suitability for fast calculations of phonons and related properties, as well as for real-time interpretation of neutron scattering spectra. Our findings highlight how the rapid advancement of AI in science is revolutionizing experimental research and data analysis.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 0 likes.

Youtube Logo Streamline Icon: https://streamlinehq.com