Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Trade-offs in Data Memorization via Strong Data Processing Inequalities (2506.01855v1)

Published 2 Jun 2025 in cs.LG, cs.IT, math.IT, and stat.ML

Abstract: Recent research demonstrated that training LLMs involves memorization of a significant fraction of training data. Such memorization can lead to privacy violations when training on sensitive user data and thus motivates the study of data memorization's role in learning. In this work, we develop a general approach for proving lower bounds on excess data memorization, that relies on a new connection between strong data processing inequalities and data memorization. We then demonstrate that several simple and natural binary classification problems exhibit a trade-off between the number of samples available to a learning algorithm, and the amount of information about the training data that a learning algorithm needs to memorize to be accurate. In particular, $\Omega(d)$ bits of information about the training data need to be memorized when $O(1)$ $d$-dimensional examples are available, which then decays as the number of examples grows at a problem-specific rate. Further, our lower bounds are generally matched (up to logarithmic factors) by simple learning algorithms. We also extend our lower bounds to more general mixture-of-clusters models. Our definitions and results build on the work of Brown et al. (2021) and address several limitations of the lower bounds in their work.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.