Papers
Topics
Authors
Recent
Search
2000 character limit reached

Fairness Dynamics During Training

Published 2 Jun 2025 in cs.CL | (2506.01709v1)

Abstract: We investigate fairness dynamics during LLM training to enable the diagnoses of biases and mitigations through training interventions like early stopping; we find that biases can emerge suddenly and do not always follow common performance metrics. We introduce two new metrics to evaluate fairness dynamics holistically during model pre-training: Average Rank and Jensen-Shannon Divergence by Parts. These metrics provide insights into the Pythia models' progression of biases in gender prediction of occupations on the WinoBias dataset. By monitoring these dynamics, we find that (1) Pythia-6.9b is biased towards men; it becomes more performant and confident predicting "male" than "female" during training, (2) via early-stopping, Pythia-6.9b can exchange 1.7% accuracy on LAMBADA for a 92.5% increase in fairness, and (3) larger models can exhibit more bias; Pythia-6.9b makes more assumptions about gender than Pythia-160m, even when a subject's gender is not specified.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.