Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Multi-Modal Dataset Distillation in the Wild (2506.01586v1)

Published 2 Jun 2025 in cs.CV and cs.LG

Abstract: Recent multi-modal models have shown remarkable versatility in real-world applications. However, their rapid development encounters two critical data challenges. First, the training process requires large-scale datasets, leading to substantial storage and computational costs. Second, these data are typically web-crawled with inevitable noise, i.e., partially mismatched pairs, severely degrading model performance. To these ends, we propose Multi-modal dataset Distillation in the Wild, i.e., MDW, the first framework to distill noisy multi-modal datasets into compact clean ones for effective and efficient model training. Specifically, MDW introduces learnable fine-grained correspondences during distillation and adaptively optimizes distilled data to emphasize correspondence-discriminative regions, thereby enhancing distilled data's information density and efficacy. Moreover, to capture robust cross-modal correspondence prior knowledge from real data, MDW proposes dual-track collaborative learning to avoid the risky data noise, alleviating information loss with certifiable noise tolerance. Extensive experiments validate MDW's theoretical and empirical efficacy with remarkable scalability, surpassing prior methods by over 15% across various compression ratios, highlighting its appealing practicality for applications with diverse efficacy and resource needs.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.