Multi-Modal Dataset Distillation in the Wild (2506.01586v1)
Abstract: Recent multi-modal models have shown remarkable versatility in real-world applications. However, their rapid development encounters two critical data challenges. First, the training process requires large-scale datasets, leading to substantial storage and computational costs. Second, these data are typically web-crawled with inevitable noise, i.e., partially mismatched pairs, severely degrading model performance. To these ends, we propose Multi-modal dataset Distillation in the Wild, i.e., MDW, the first framework to distill noisy multi-modal datasets into compact clean ones for effective and efficient model training. Specifically, MDW introduces learnable fine-grained correspondences during distillation and adaptively optimizes distilled data to emphasize correspondence-discriminative regions, thereby enhancing distilled data's information density and efficacy. Moreover, to capture robust cross-modal correspondence prior knowledge from real data, MDW proposes dual-track collaborative learning to avoid the risky data noise, alleviating information loss with certifiable noise tolerance. Extensive experiments validate MDW's theoretical and empirical efficacy with remarkable scalability, surpassing prior methods by over 15% across various compression ratios, highlighting its appealing practicality for applications with diverse efficacy and resource needs.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.