Papers
Topics
Authors
Recent
2000 character limit reached

LinearVC: Linear transformations of self-supervised features through the lens of voice conversion

Published 2 Jun 2025 in eess.AS and cs.CL | (2506.01510v1)

Abstract: We introduce LinearVC, a simple voice conversion method that sheds light on the structure of self-supervised representations. First, we show that simple linear transformations of self-supervised features effectively convert voices. Next, we probe the geometry of the feature space by constraining the set of allowed transformations. We find that just rotating the features is sufficient for high-quality voice conversion. This suggests that content information is embedded in a low-dimensional subspace which can be linearly transformed to produce a target voice. To validate this hypothesis, we finally propose a method that explicitly factorizes content and speaker information using singular value decomposition; the resulting linear projection with a rank of just 100 gives competitive conversion results. Our work has implications for both practical voice conversion and a broader understanding of self-supervised speech representations. Samples and code: https://www.kamperh.com/linearvc/.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 10 likes about this paper.