Continual Speech Learning with Fused Speech Features (2506.01496v2)
Abstract: Rapid growth in speech data demands adaptive models, as traditional static methods fail to keep pace with dynamic and diverse speech information. We introduce continuous speech learning, a new set-up targeting at bridging the adaptation gap in current speech models. We use the encoder-decoder Whisper model to standardize speech tasks into a generative format. We integrate a learnable gated-fusion layer on the top of the encoder to dynamically select task-specific features for downstream tasks. Our approach improves accuracy significantly over traditional methods in six speech processing tasks, demonstrating gains in adapting to new speech tasks without full retraining.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.