Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

ViTA-PAR: Visual and Textual Attribute Alignment with Attribute Prompting for Pedestrian Attribute Recognition (2506.01411v1)

Published 2 Jun 2025 in cs.CV and cs.AI

Abstract: The Pedestrian Attribute Recognition (PAR) task aims to identify various detailed attributes of an individual, such as clothing, accessories, and gender. To enhance PAR performance, a model must capture features ranging from coarse-grained global attributes (e.g., for identifying gender) to fine-grained local details (e.g., for recognizing accessories) that may appear in diverse regions. Recent research suggests that body part representation can enhance the model's robustness and accuracy, but these methods are often restricted to attribute classes within fixed horizontal regions, leading to degraded performance when attributes appear in varying or unexpected body locations. In this paper, we propose Visual and Textual Attribute Alignment with Attribute Prompting for Pedestrian Attribute Recognition, dubbed as ViTA-PAR, to enhance attribute recognition through specialized multimodal prompting and vision-language alignment. We introduce visual attribute prompts that capture global-to-local semantics, enabling diverse attribute representations. To enrich textual embeddings, we design a learnable prompt template, termed person and attribute context prompting, to learn person and attributes context. Finally, we align visual and textual attribute features for effective fusion. ViTA-PAR is validated on four PAR benchmarks, achieving competitive performance with efficient inference. We release our code and model at https://github.com/mlnjeongpark/ViTA-PAR.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube