Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Mamba Drafters for Speculative Decoding (2506.01206v1)

Published 1 Jun 2025 in cs.CL and cs.AI

Abstract: Speculative decoding has emerged as a promising approach to accelerating LLM generation using a fast drafter while maintaining alignment with the target model's distribution. However, existing approaches face a trade-off: external drafters offer flexibility but can suffer from slower drafting, while self-speculation methods use drafters tailored to the target model but require re-training. In this paper, we introduce novel drafters based on Mamba, a state-of-the-art state space model (SSM), as a solution that combines the best aspects of both approaches. By leveraging the linear structure of SSMs, our approach avoids the quadratic complexity inherent in traditional Transformer-based methods, enabling faster drafting and lower memory usage while maintaining the flexibility to work across different target models. We further enhance efficiency with a novel test-time tree search algorithm for generating high-quality draft candidates. Our empirical evaluation demonstrates that Mamba-based drafters not only outperform existing external drafting methods but are also comparable to state-of-the-art self-speculation approaches while using less memory and maintaining their cross-model adaptability.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.