Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

VUSA: Virtually Upscaled Systolic Array Architecture to Exploit Unstructured Sparsity in AI Acceleration (2506.01166v1)

Published 1 Jun 2025 in cs.AR, cs.AI, and cs.LG

Abstract: Leveraging high degrees of unstructured sparsity is a promising approach to enhance the efficiency of deep neural network DNN accelerators - particularly important for emerging Edge-AI applications. We introduce VUSA, a systolic-array architecture that virtually grows based on the present sparsity to perform larger matrix multiplications with the same number of physical multiply-accumulate MAC units. The proposed architecture achieves saving by 37% and 68% in area and power efficiency, respectively, at the same peak-performance, compared to a baseline systolic array architecture in a commercial 16-nm technology. Still, the proposed architecture supports acceleration for any DNN with any sparsity - even no sparsity at all. Thus, the proposed architecture is application-independent, making it viable for general-purpose AI acceleration.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube