Papers
Topics
Authors
Recent
Search
2000 character limit reached

Contextual Candor: Enhancing LLM Trustworthiness Through Hierarchical Unanswerability Detection

Published 1 Jun 2025 in cs.CL | (2506.01104v1)

Abstract: The pervasive deployment of LLMs in conversational AI systems has revolutionized information access, yet their propensity for generating factually unsupported or hallucinated responses remains a critical impediment to trustworthiness and widespread adoption. This paper introduces Reinforced Unanswerability Learning (RUL), a novel hybrid training paradigm designed to imbue LLMs with the intrinsic capability to accurately detect unanswerable questions and generate reliably appropriate responses. Unlike conventional approaches that rely on external classifiers or simple prompting, RUL integrates a discriminative unanswerability prediction head with the LLM's generative core, guided by a multi-stage learning strategy. This includes supervised fine-tuning on a novel, richly annotated dataset, Enhanced-CAsT-Answerability (ECA), which features hierarchical answerability labels and ground-truth refusal responses. Crucially, RUL incorporates a subsequent reinforcement learning with human feedback (RLHF) phase to refine the nuance, helpfulness, and informativeness of refusal responses. Extensive experiments demonstrate RUL's superior performance, achieving significantly higher accuracy in unanswerability detection across sentence, paragraph, and ranking levels, and substantially increasing the generation of appropriate refusals for unanswerable queries, alongside strong performance on answerable questions. Human evaluations further corroborate RUL's effectiveness, highlighting a marked improvement in perceived helpfulness and trustworthiness, ultimately paving the way for more reliable and user-centric conversational AI.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.