Self-supervised ControlNet with Spatio-Temporal Mamba for Real-world Video Super-resolution (2506.01037v1)
Abstract: Existing diffusion-based video super-resolution (VSR) methods are susceptible to introducing complex degradations and noticeable artifacts into high-resolution videos due to their inherent randomness. In this paper, we propose a noise-robust real-world VSR framework by incorporating self-supervised learning and Mamba into pre-trained latent diffusion models. To ensure content consistency across adjacent frames, we enhance the diffusion model with a global spatio-temporal attention mechanism using the Video State-Space block with a 3D Selective Scan module, which reinforces coherence at an affordable computational cost. To further reduce artifacts in generated details, we introduce a self-supervised ControlNet that leverages HR features as guidance and employs contrastive learning to extract degradation-insensitive features from LR videos. Finally, a three-stage training strategy based on a mixture of HR-LR videos is proposed to stabilize VSR training. The proposed Self-supervised ControlNet with Spatio-Temporal Continuous Mamba based VSR algorithm achieves superior perceptual quality than state-of-the-arts on real-world VSR benchmark datasets, validating the effectiveness of the proposed model design and training strategies.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.