Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 415 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Improve MLLM Benchmark Efficiency through Interview (2506.00883v1)

Published 1 Jun 2025 in cs.CL

Abstract: The rapid development of Multimodal LLMs (MLLM) has led to a wide range of MLLM applications, and a number of benchmark datasets have sprung up in order to assess MLLM abilities. However, full-coverage Q&A testing on large-scale data is resource-intensive and time-consuming. To address this issue, we propose the MLLM Interview (MITV) strategy, which aims to quickly obtain MLLM performance metrics by quizzing fewer question. First, First, we constructed the interview dataset, which was built on an existing MLLM assessment dataset, by adding difficulty labels based on the performance of some typical MLLMs in this dataset. Second, we propose an MLLM Interview strategy, which obtains an initial performance situation of the large model by quizzing a small number of topics and then continuously tries to test the model's limits. Through extensive experiments, the result shows that the MITV strategy proposed in this paper performs well on MLLM benchmark datasets, and it is able to obtain the model evaluation capability faster through a small number of questions and answers.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.