HASRD: Hierarchical Acoustic and Semantic Representation Disentanglement (2506.00843v1)
Abstract: Effective speech representations for spoken LLMs must balance semantic relevance with acoustic fidelity for high-quality reconstruction. However, existing approaches struggle to achieve both simultaneously. To address this, we introduce Hierarchical Acoustic and Semantic Representation Disentanglement (HASRD, pronounced `hazard'), a framework that factorizes self-supervised learning representations into discrete semantic and acoustic tokens. HASRD assigns the semantic representation to the first codebook, while encoding acoustic residuals in subsequent codebooks. This preserves ASR performance while achieving high-quality reconstruction. Additionally, we enhance HASRD's encoder efficiency, improving ASR performance without compromising reconstruction quality. Compared to SpeechTokenizer, HASRD achieves a 44% relative WER improvement, superior reconstruction quality, and 2x lower bitrate, demonstrating its effectiveness in disentangling acoustic and semantic information.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.