Papers
Topics
Authors
Recent
2000 character limit reached

Do not Abstain! Identify and Solve the Uncertainty (2506.00780v1)

Published 1 Jun 2025 in cs.AI

Abstract: Despite the widespread application of LLMs across various domains, they frequently exhibit overconfidence when encountering uncertain scenarios, yet existing solutions primarily rely on evasive responses (e.g., "I don't know") overlooks the opportunity of identifying and addressing the uncertainty to generate more satisfactory responses. To systematically investigate and improve LLMs' ability of recognizing and addressing the source of uncertainty, we introduce \textbf{ConfuseBench}, a benchmark mainly focus on three types of uncertainty: document scarcity, limited capability, and query ambiguity. Experiments with ConfuseBench reveal that current LLMs struggle to accurately identify the root cause of uncertainty and solve it. They prefer to attribute uncertainty to query ambiguity while overlooking capability limitations, especially for those weaker models. To tackle this challenge, we first generate context-aware inquiries that highlight the confusing aspect of the original query. Then we judge the source of uncertainty based on the uniqueness of the inquiry's answer. Further we use an on-policy training method, InteractDPO to generate better inquiries. Experimental results demonstrate the efficacy of our approach.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.