Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Constrained Stein Variational Gradient Descent for Robot Perception, Planning, and Identification (2506.00589v1)

Published 31 May 2025 in cs.RO and cs.LG

Abstract: Many core problems in robotics can be framed as constrained optimization problems. Often on these problems, the robotic system has uncertainty, or it would be advantageous to identify multiple high quality feasible solutions. To enable this, we present two novel frameworks for applying principles of constrained optimization to the new variational inference algorithm Stein variational gradient descent. Our general framework supports multiple types of constrained optimizers and can handle arbitrary constraints. We demonstrate on a variety of problems that we are able to learn to approximate distributions without violating constraints. Specifically, we show that we can build distributions of: robot motion plans that exactly avoid collisions, robot arm joint angles on the SE(3) manifold with exact table placement constraints, and object poses from point clouds with table placement constraints.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube