CASPER: A Large Scale Spontaneous Speech Dataset (2506.00267v3)
Abstract: The success of LLMs has driven interest in developing similar speech processing capabilities. However, a key challenge is the scarcity of high-quality spontaneous speech data, as most existing datasets contain scripted dialogues. To address this, we present a novel pipeline for eliciting and recording natural dialogues and release our dataset with 100+ hours of spontaneous speech. Our approach fosters fluid, natural conversations while encouraging a diverse range of topics and interactive exchanges. Unlike traditional methods, it facilitates genuine interactions, providing a reproducible framework for future data collection. This paper introduces our dataset and methodology, laying the groundwork for addressing the shortage of spontaneous speech data. We plan to expand this dataset in future stages, offering a growing resource for the research community.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.