Ethical AI: Towards Defining a Collective Evaluation Framework (2506.00233v1)
Abstract: AI is transforming sectors such as healthcare, finance, and autonomous systems, offering powerful tools for innovation. Yet its rapid integration raises urgent ethical concerns related to data ownership, privacy, and systemic bias. Issues like opaque decision-making, misleading outputs, and unfair treatment in high-stakes domains underscore the need for transparent and accountable AI systems. This article addresses these challenges by proposing a modular ethical assessment framework built on ontological blocks of meaning-discrete, interpretable units that encode ethical principles such as fairness, accountability, and ownership. By integrating these blocks with FAIR (Findable, Accessible, Interoperable, Reusable) principles, the framework supports scalable, transparent, and legally aligned ethical evaluations, including compliance with the EU AI Act. Using a real-world use case in AI-powered investor profiling, the paper demonstrates how the framework enables dynamic, behavior-informed risk classification. The findings suggest that ontological blocks offer a promising path toward explainable and auditable AI ethics, though challenges remain in automation and probabilistic reasoning.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.