Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 66 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Randomized Dimensionality Reduction for Euclidean Maximization and Diversity Measures (2506.00165v1)

Published 30 May 2025 in cs.DS and cs.LG

Abstract: Randomized dimensionality reduction is a widely-used algorithmic technique for speeding up large-scale Euclidean optimization problems. In this paper, we study dimension reduction for a variety of maximization problems, including max-matching, max-spanning tree, max TSP, as well as various measures for dataset diversity. For these problems, we show that the effect of dimension reduction is intimately tied to the \emph{doubling dimension} $\lambda_X$ of the underlying dataset $X$ -- a quantity measuring intrinsic dimensionality of point sets. Specifically, we prove that a target dimension of $O(\lambda_X)$ suffices to approximately preserve the value of any near-optimal solution,which we also show is necessary for some of these problems. This is in contrast to classical dimension reduction results, whose dependence increases with the dataset size $|X|$. We also provide empirical results validating the quality of solutions found in the projected space, as well as speedups due to dimensionality reduction.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube