Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 96 tok/s
Gemini 3.0 Pro 48 tok/s Pro
Gemini 2.5 Flash 155 tok/s Pro
Kimi K2 197 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Hi-Dyna Graph: Hierarchical Dynamic Scene Graph for Robotic Autonomy in Human-Centric Environments (2506.00083v1)

Published 30 May 2025 in cs.RO and cs.AI

Abstract: Autonomous operation of service robotics in human-centric scenes remains challenging due to the need for understanding of changing environments and context-aware decision-making. While existing approaches like topological maps offer efficient spatial priors, they fail to model transient object relationships, whereas dense neural representations (e.g., NeRF) incur prohibitive computational costs. Inspired by the hierarchical scene representation and video scene graph generation works, we propose Hi-Dyna Graph, a hierarchical dynamic scene graph architecture that integrates persistent global layouts with localized dynamic semantics for embodied robotic autonomy. Our framework constructs a global topological graph from posed RGB-D inputs, encoding room-scale connectivity and large static objects (e.g., furniture), while environmental and egocentric cameras populate dynamic subgraphs with object position relations and human-object interaction patterns. A hybrid architecture is conducted by anchoring these subgraphs to the global topology using semantic and spatial constraints, enabling seamless updates as the environment evolves. An agent powered by LLMs is employed to interpret the unified graph, infer latent task triggers, and generate executable instructions grounded in robotic affordances. We conduct complex experiments to demonstrate Hi-Dyna Grap's superior scene representation effectiveness. Real-world deployments validate the system's practicality with a mobile manipulator: robotics autonomously complete complex tasks with no further training or complex rewarding in a dynamic scene as cafeteria assistant. See https://anonymous.4open.science/r/Hi-Dyna-Graph-B326 for video demonstration and more details.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.