Whose Name Comes Up? Auditing LLM-Based Scholar Recommendations (2506.00074v1)
Abstract: This paper evaluates the performance of six open-weight LLMs (llama3-8b, llama3.1-8b, gemma2-9b, mixtral-8x7b, llama3-70b, llama3.1-70b) in recommending experts in physics across five tasks: top-k experts by field, influential scientists by discipline, epoch, seniority, and scholar counterparts. The evaluation examines consistency, factuality, and biases related to gender, ethnicity, academic popularity, and scholar similarity. Using ground-truth data from the American Physical Society and OpenAlex, we establish scholarly benchmarks by comparing model outputs to real-world academic records. Our analysis reveals inconsistencies and biases across all models. mixtral-8x7b produces the most stable outputs, while llama3.1-70b shows the highest variability. Many models exhibit duplication, and some, particularly gemma2-9b and llama3.1-8b, struggle with formatting errors. LLMs generally recommend real scientists, but accuracy drops in field-, epoch-, and seniority-specific queries, consistently favoring senior scholars. Representation biases persist, replicating gender imbalances (reflecting male predominance), under-representing Asian scientists, and over-representing White scholars. Despite some diversity in institutional and collaboration networks, models favor highly cited and productive scholars, reinforcing the rich-getricher effect while offering limited geographical representation. These findings highlight the need to improve LLMs for more reliable and equitable scholarly recommendations.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.