Papers
Topics
Authors
Recent
2000 character limit reached

Toward Knowledge-Guided AI for Inverse Design in Manufacturing: A Perspective on Domain, Physics, and Human-AI Synergy (2506.00056v1)

Published 29 May 2025 in cs.AI and physics.comp-ph

Abstract: AI is reshaping inverse design across manufacturing domain, enabling high-performance discovery in materials, products, and processes. However, purely data-driven approaches often struggle in realistic settings characterized by sparse data, high-dimensional design spaces, and nontrivial physical constraints. This perspective argues for a new generation of design systems that transcend black-box modeling by integrating domain knowledge, physics-informed learning, and intuitive human-AI interfaces. We first demonstrate how expert-guided sampling strategies enhance data efficiency and model generalization. Next, we discuss how physics-informed machine learning enables physically consistent modeling in data-scarce regimes. Finally, we explore how LLMs emerge as interactive design agents connecting user intent with simulation tools, optimization pipelines, and collaborative workflows. Through illustrative examples and conceptual frameworks, we advocate that inverse design in manufacturing should evolve into a unified ecosystem, where domain knowledge, physical priors, and adaptive reasoning collectively enable scalable, interpretable, and accessible AI-driven design systems.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.