Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A localized consensus-based sampling algorithm (2505.24861v1)

Published 30 May 2025 in math.NA, cs.NA, and math.OC

Abstract: We develop a novel interacting-particle method for sampling from non-Gaussian distributions. As a first step, we propose a new way to derive the consensus-based sampling (CBS) algorithm, starting from ensemble-preconditioned Langevin diffusions. We approximate the target potential by its Moreau envelope, such that the gradient in the Langevin equation can be replaced by a proximal operator. We then approximate the proximal operator by a weighted mean, and finally assume that the initial and target distributions are Gaussian, resulting in the CBS dynamics. If we keep only those approximations that can be justified in the non-Gaussian setting, the result is a new interacting-particle method for sampling, which we call localized consensus-based sampling. We prove that our algorithm is affine-invariant and exact for Gaussian distributions in the mean-field setting. Numerical tests illustrate that localized CBS compares favorably to alternative methods in terms of affine-invariance and performance on non-Gaussian distributions.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: