Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 162 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Online Budget-Feasible Mechanism Design with Predictions (2505.24624v1)

Published 30 May 2025 in cs.GT

Abstract: Augmenting the input of algorithms with predictions is an algorithm design paradigm that suggests leveraging a (possibly erroneous) prediction to improve worst-case performance guarantees when the prediction is perfect (consistency), while also providing a performance guarantee when the prediction fails (robustness). Recently, Xu and Lu [2022] and Agrawal et al. [2024] proposed to consider settings with strategic agents under this framework. In this paper, we initiate the study of budget-feasible mechanism design with predictions. These mechanisms model a procurement auction scenario in which an auctioneer (buyer) with a strict budget constraint seeks to purchase goods or services from a set of strategic agents, so as to maximize her own valuation function. We focus on the online version of the problem where the arrival order of agents is random. We design mechanisms that are truthful, budget-feasible, and achieve a significantly improved competitive ratio for both monotone and non-monotone submodular valuation functions compared to their state-of-the-art counterparts without predictions. Our results assume access to a prediction for the value of the optimal solution to the offline problem. We complement our positive results by showing that for the offline version of the problem, access to predictions is mostly ineffective in improving approximation guarantees.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.