AMIA: Automatic Masking and Joint Intention Analysis Makes LVLMs Robust Jailbreak Defenders (2505.24519v1)
Abstract: We introduce AMIA, a lightweight, inference-only defense for Large Vision-LLMs (LVLMs) that (1) Automatically Masks a small set of text-irrelevant image patches to disrupt adversarial perturbations, and (2) conducts joint Intention Analysis to uncover and mitigate hidden harmful intents before response generation. Without any retraining, AMIA improves defense success rates across diverse LVLMs and jailbreak benchmarks from an average of 52.4% to 81.7%, preserves general utility with only a 2% average accuracy drop, and incurs only modest inference overhead. Ablation confirms both masking and intention analysis are essential for a robust safety-utility trade-off.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.