Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Anomaly Detection and Improvement of Clusters using Enhanced K-Means Algorithm (2505.24365v1)

Published 30 May 2025 in cs.LG and cs.PF

Abstract: This paper introduces a unified approach to cluster refinement and anomaly detection in datasets. We propose a novel algorithm that iteratively reduces the intra-cluster variance of N clusters until a global minimum is reached, yielding tighter clusters than the standard k-means algorithm. We evaluate the method using intrinsic measures for unsupervised learning, including the silhouette coefficient, Calinski-Harabasz index, and Davies-Bouldin index, and extend it to anomaly detection by identifying points whose assignment causes a significant variance increase. External validation on synthetic data and the UCI Breast Cancer and UCI Wine Quality datasets employs the Jaccard similarity score, V-measure, and F1 score. Results show variance reductions of 18.7% and 88.1% on the synthetic and Wine Quality datasets, respectively, along with accuracy and F1 score improvements of 22.5% and 20.8% on the Wine Quality dataset.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: