Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 180 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 66 tok/s Pro
Kimi K2 163 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Principal Context-aware Diffusion Guided Data Augmentation for Fault Localization (2505.24079v1)

Published 29 May 2025 in cs.SE

Abstract: Test cases are indispensable for conducting effective fault localization (FL). However, test cases in practice are severely class imbalanced, i.e. the number of failing test cases (i.e. minority class) is much less than that of passing ones (i.e. majority class). The severe class imbalance between failing and passing test cases have hindered the FL effectiveness. To address this issue, we propose PCD-DAug: a Principal Context-aware Diffusion guided Data Augmentation approach that generate synthesized failing test cases for improving FL. PCD-DAug first combines program slicing with principal component analysis to construct a principal context that shows how a set of statements influences the faulty output via statistical program dependencies. Then, PCD-DAug devises a conditional diffusion model to learn from principle contexts for generating synthesized failing test cases and acquiring a class balanced dataset for FL. We conducted large-scale experiments on six state-of-the-art FL approaches and compare PCD-DAug with six data augmentation baselines. The results show that PCD-DAug significantly improves FL effectiveness, e.g. achieving average improvements of 383.83%, 227.08%, and 224.19% in six FL approaches under the metrics Top-1, Top-3, and Top-5, respectively.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: