Papers
Topics
Authors
Recent
2000 character limit reached

Retrieval Augmented Generation based Large Language Models for Causality Mining (2505.23944v1)

Published 29 May 2025 in cs.CL

Abstract: Causality detection and mining are important tasks in information retrieval due to their enormous use in information extraction, and knowledge graph construction. To solve these tasks, in existing literature there exist several solutions -- both unsupervised and supervised. However, the unsupervised methods suffer from poor performance and they often require significant human intervention for causal rule selection, leading to poor generalization across different domains. On the other hand, supervised methods suffer from the lack of large training datasets. Recently, LLMs with effective prompt engineering are found to be effective to overcome the issue of unavailability of large training dataset. Yet, in existing literature, there does not exist comprehensive works on causality detection and mining using LLM prompting. In this paper, we present several retrieval-augmented generation (RAG) based dynamic prompting schemes to enhance LLM performance in causality detection and extraction tasks. Extensive experiments over three datasets and five LLMs validate the superiority of our proposed RAG-based dynamic prompting over other static prompting schemes.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.